Impact of translational selection on codon usage bias in the archaeon Methanococcus maripaludis.
نویسندگان
چکیده
Patterns of codon usage have been extensively studied among Bacteria and Eukaryotes, but there has been little investigation of species from the third domain of life, the Archaea. Here, we examine the nature of codon usage bias in a methanogenic archaeon, Methanococcus maripaludis. Genome-wide patterns of codon usage are dominated by a strong A + T bias, presumably largely reflecting mutation patterns. Nevertheless, there is variation among genes in the use of a subset of putatively translationally optimal codons, which is strongly correlated with gene expression level. In comparison with Bacteria such as Escherichia coli, the strength of selected codon usage bias in highly expressed genes in M. maripaludis seems surprisingly high given its moderate growth rate. However, the pattern of selected codon usage differs between M. maripaludis and E. coli: in the archaeon, strongly selected codon usage bias is largely restricted to twofold degenerate amino acids (AAs). Weaker bias among the codons for fourfold degenerate AAs is consistent with the small number of tRNA genes in the M. maripaludis genome.
منابع مشابه
Impact of translational selection on codon usage bias in the Archaeaon Methanococcus maripaludis
Identification of expected highly expressed genes Expected highly expressed (HE) genes encoding ribosomal proteins were identified first on the basis of genome annotation. To ensure that these genes were functional and highly expressed, we implemented two criteria: (1) an orthologous copy must be present in at least 95% of the 53 available archaeal genome sequences from different species, and (...
متن کاملQuantitative proteomics of the archaeon Methanococcus maripaludis validated by microarray analysis and real time PCR.
For the archaeon Methanococcus maripaludis, a fully sequenced and annotated model species of hydrogenotrophic methanogen, we report validation of quantitative protein level expression ratios on a proteome-wide basis. Using an approach based on quantitative multidimensional capillary HPLC and quadrupole ion trap mass spectrometry, coverage of gene expression approached that currently achievable ...
متن کاملNucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis.
We report the characterization of the first chaperonin (Mm-cpn) from a mesophilic archaeon, Methanococcus maripaludis. The single gene was cloned from genomic DNA and expressed in Escherichia coli to produce a recombinant protein of 543 amino acids. In contrast with other known archaeal chaperonins, Mm-cpn is fully functional in all respects under physiological conditions of 37 degrees C. The c...
متن کاملMutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کاملFunctional conservation between the argininosuccinate lyase of the archaeon Methanococcus maripaludis and the corresponding bacterial and eukaryal genes.
The argH gene encoding argininosuccinate lyase (ASL) of Methanococcus maripaludis was cloned on a 4.7-kb HindIII genomic fragment. The gene is preceded by a short open reading frame (ORF149), which encodes a polypeptide with an unknown function. The two genes are co-transcribed. The ASL of M. maripaludis shares a high amino acid identity with ASLs from both bacterial and eukaryal origins and wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biology letters
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2011